

EXAMINATIONS COUNCIL OF LESOTHO

Elegion of Leache Stinistry of Education and Training	Lesotho General Certificate of Secondar	y Education
CANDIDATE NAME		
CENTRE NUMBER	CANDIDATE NUMBER	
PHYSICAL SC	IENCE	0181/03
Paper 3 Extend	ded Theory	October/November 2018
		1 hour 30 minutes
Candidates ans No Additional M	swer on the Question Paper. faterials are required.	Marks: 80
READ THESE	INSTRUCTIONS FIRST	
You may use ar Do not use stap	tre number, candidate number and name in the ue or black pen. n HB pencil for any diagrams or graphs. bles, paper clips, glue or correction fluid. E IN ANY BARCODES.	e spaces at the top of this page.
	stions. lators may be used.	

the Periodic Table is printed on page 20.

You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

834

This document consists of 19 printed pages and 1 blank page.

1 Fig. 1.1 shows two identical razor blades, A and B, dropped at the same time from the top of a building 4m high.

Blade A is dropped on its face while blade B is dropped on its edge.

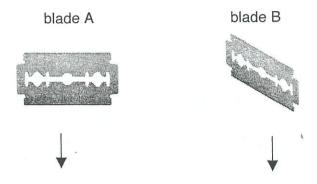


Fig. 1.1

(a)	State the force which pulls the blades down.
	[1]
(b)	Describe how the speed of blade B varies during its fall.
	[2

(c) Fig. 1.2 shows the velocity-time graph for blade A.

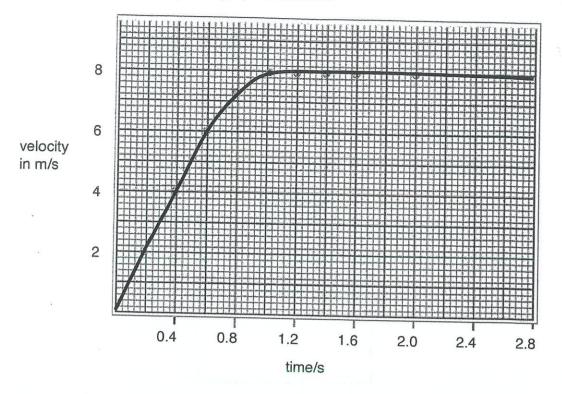


Fig. 1.2

(i) Calculate the acceleration of blade A between $t=0\,s$ and $t=0.6\,s$.

acceleration = [2]

(ii) On Fig. 1.2 sketch the velocity-time graph for blade B.

[2]

[Total: 7]

2 An experiment is set up to heat a solid iron block by using an immersion heater connected to a 12 V supply.

A student uses the apparatus in Fig. 2.1 to measure the temperature of the iron block as it is heated.

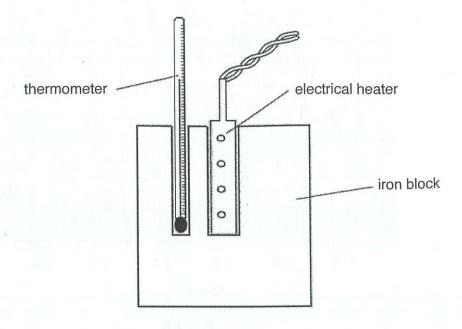


Fig. 2.1

(a)	Describe how the loss of thermal energy(heat) from the iron block can be reduced.
	[1]
(b)	The student connected an ammeter and a voltmeter in the circuit in order to determine the power supplied by the heater.
	Name the quantity measured by the voltmeter.
	[1]

(c) Table 2.1 shows the results of the experiment.

Table 2.1

VoltageAV				
voltage/V	current/A	mass of the metal cylinder/kg	11010436 111	time for which
12.0	2.5		temperature/°C	heater is on min
Calculate:		1.5	20	5

(i)	the	power	of	the	heater.
-----	-----	-------	----	-----	---------

		power:	
(ii)	the total thermal energy gained by the ire (assuming no heat loss)	power: on block,	[2]

(iii)	the specific heat capacity of the iron block.	energy:	[3
5	capacity of the iron block.	Calcinomic classics	ر

specific heat capacity:[3]

[Total: 10]

3	A man standing 50 m away from a high wall beats a drum.
	The atmospheric temperature is 20 °C.

(a)	Calculate the time it will take for the man to hear the echo of the beat.
	(speed of sound in air at 20 °C is about 330 m/s)

		time = [2]
(b)	Pred	dict how the speed of sound would change if the air was at 10 °C. Explain your answer.	
			•••
		[21
			<u>-1</u>
(c)	Fig.	. 3.1 represents a sound wave produced by a vibrating turning fork in air.	
		.	
		Fig. 3.1	
	<i>(</i> 1)		
	(i)	State what the letter R represents.	
			[1]
	(ii)	The frequency of the tuning fork is 600 Hz.	
		Calculate the wavelength of the sound waves in centimetres.	

wavelength: cm [2]

[Total: 7]

Fig. 4.1 shows a negatively charged rod placed near two metal cans A and B each placed on The two metal cans are in contact.

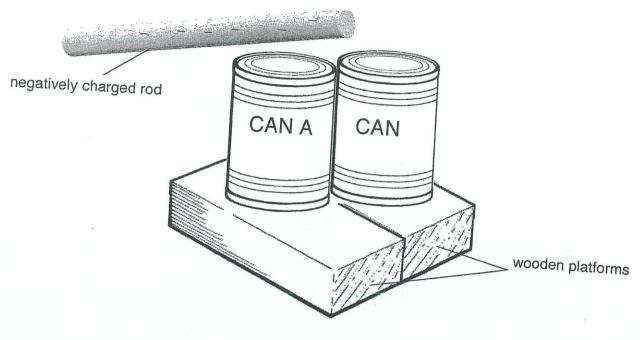


Fig. 4.1

	5	
	(a) Can B is separated from can A by moving the wooden platform from which it is placed while the charged rod is still held in the position shown in Fig. 4.1.	
	the charged rod is still held in the position shown in Fig. 4.1.	
	the charged rod is still held in the position shows the platform from which it is placed with	
	position shown in Fig. 4.1.	
	Explain in terms of electron transfer	
	of election transfer why can B is negatively at	
	Explain in terms of electron transfer why can B is negatively charged.	

	Can A is brought close to the matter. [2]	
(b)	Can A is brought close to the metal cap of a positively charged gold-leaf electroscope by	
	moving the weed to the metal cap of a positively about	
	the wooden platform on which it is placed charged gold-leaf electroscope by	
	The placed.	
	Explain what happens to the loof of the	
	Explain what happens to the leaf of the gold-leaf electroscope.	
	······································	
	[2]	

(c) Fig. 4.2 shows a 12V car battery connected to two identical lamps and two ammeters in a circuit.

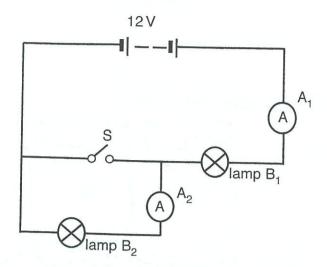


Fig. 4.2

(i) An Ammeter A_1 reads 2.0 A when switch S is open. Determine the reading on Ammeter A_2 .

	ammeter reading:[1]
(ii)	Switch S is closed.
	State and explain what happens to the brightness of lamp B ₂ .
	effect on brightness:
	explanation:
	[2]

(d) Fig. 4.3 shows an 11 W fluorescent bulb supplied with 240 V.

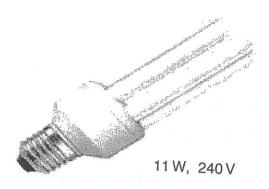


Fig. 4.3

(i)	Explain why fluorescent bulbs are preferred to filament bulbs.
	State the energy share in [2]
(ii)	State the energy change that takes place in the bulb. [2]
	[2]
	[Total: 11]

- 5 In a nuclear power station, fission of ²³⁵₉₂U is used to produce electricity.
 - (a) Define fission

 	[1]

(b) Complete the fission reaction of uranium.

$${}^{235}_{92}\text{U} + {}^{1}_{0}n \rightarrow {}^{144}_{56} + {}_{36}\text{KR} + 2{}^{1}_{0}n$$
 [2]

(c) State two disadvantages of using nuclear power stations.

[Total: 5]

6 Fig. 6.1 shows plants grown in a transparent plastic house and fed with a nutrient solution.

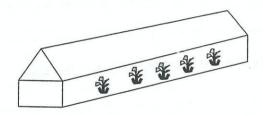


Fig. 6.1

(a) The plants in Fig. 6.1 produce carbohydrates by photosynthesis.

(i) Name the form of energy required for this process	
---	--

......[1]

(ii) Write a balanced symbol equation for photosynthesis.

.....

(b) Table 6.1 shows the concentration of the ions in the nutrient solution used to feed the plants.

Table 6.1

element	ionic formula	common source	concentration in mg/l
nitrogen	NO ₃ -	ammonium nitrate	200
phosphorus	PO ₄ 3-	potassium phosphate	40
potassium	K ⁺	potassium hydroxide	140

(i)	Explain why it is advisable to prepare the nutrient solution only when the plants are fed.
(ii)	Draw a labelled diagram of apparatus that could be used to demonstrate that the nutrient solution conducts electricity.

[3]

[Total: 8]

7 Fig. 7.1 shows how water from a well is treated for use at school.

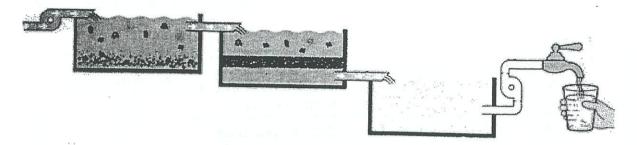


Fig. 7.1

(a)	Sug	ggest one reason why water should be treated before drinking.	
	•••••		••••
	••••		[1]
(b)	The	water collected in the tank is impure.	
	(i)	Explain why the water collected in the tank is impure.	
			· • • •
			[1]
	(ii)	Describe a physical test for the pure water.	
			•••
			[1]
(c)	Ехр	lain why some people prefer using rain water over the water from the well for laundry.	
	•••••		•••
			1]
		[Total:	4]

8 A student performed an experiment to investigate how a reaction rate changes as the reaction progresses.

Excess diluted hydrochloric acid reacted with 8g zinc granules.

(a) Fig. 8.1 is an incomplete diagram that represents the apparatus used.

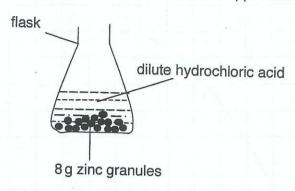


Fig. 8.1

(i) Name the gas produced in this experiment.

[1]

(ii) Complete Fig. 8.1 to show how the student collected and measured the volume of the gas produced.

(b) Fig. 8.2 displays a sketch of the results obtained during the experiment.

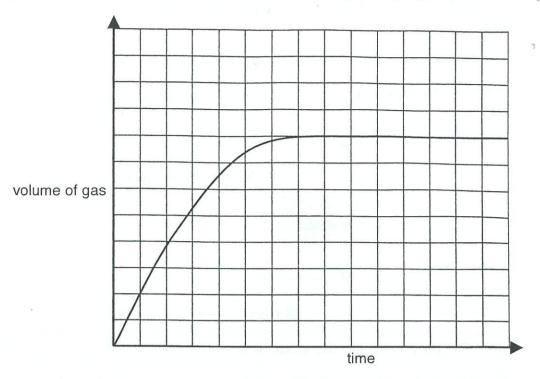


Fig. 8.2

(1)	Name another piece of apparatus required to give the results in Fig. 8.2.	[1]
(ii)	Use Fig. 8.2 to draw a conclusion from the investigation.	
(iii)	Explain the results in terms of particle collision theory.	
	·	
		[3]

(c)	$8.00\mathrm{g}$ of zinc was reacted with $50\mathrm{cm^3}$ of dilute acid solutions and at the end of the experiment $7.35\mathrm{g}$ of zinc remained.		
	The reaction in the flask is represented by the equation;	**	

 $Zn + 2HCl \rightarrow ZnCl_2 + H_2$

Calculate;

(i) Mass of zinc chloride formed. (Relative formula mass of zinc chloride is 136) Show your working.

			g [3
(ii)	Concentration, in g/dm ³ ,	of the zinc chloride.	in a straight
	Show your working.		

...... g/dm³ [2]

[Total: 13]

		10
9	Lim	e (CaO) is manufactured industrially by thermal decomposition of limestone (CaCO $_3$) in a high perature oven called a kiln.
	(a)	State one use of lime
		[1]
	(b)	Use a 'dot and cross' diagram to show the electronic structure and bonding in lime.
		Show all the electron shells.
		8
	(c)	[2] Decomposition temperature, around 1000 °C, is reached by burning fossil fuel(s) in the kiln.
	(-)	
		Describe how one of the gases emitted from the lime factory is formed. State the environmental impact of the emission of this gas.
		formation
		impact
		[Total: 5]

10 Table 10.1 shows some physical properties of hydrocarbons P, Q, R and S.

Structural formula

Table 10.1

compound	relative molecular formula	boiling point/°C
Р	42	-48
Q	30	-89
R	58	-0.5
S	44	-42

(a) The hydrocarbons, except one, belong to the same homologous series.		
	(i)	Identify the homologous series to which these hydrocarbons belong, using the information in Table 10.1.
		·····
		· · · · · · · · · · · · · · · · · · ·
		[3]
	(ii)	The compound which is not a member of the same homologous series as others is used to make a macromolecule for use as a plastic material.
		Describe how molecules of this compound react to form the macromolecule. Draw the structural formula of the macromolecule.
		Description
		[2]

(b)	Use information in Table 10.1 to describe and explain a trend in boiling points in the homologous series named in (a) (ii).						
	[3]						
	[Total: 10]						

BLANK PAGE

	Elements
FA SHEET	Table of the
DATA	Periodic T
	The

***************************************	0	Heitum	20 Neon 10			Xe Xerran		3	175
	MII		9 Thomps	35.5 C2 Otherna	80 Br Bromate	127 I lodine 163116	210 At Astatina		173
	IN		16 O Oxygen	SE (A) 32	79 Se Seienam 34	Tellerium	Poternuni Poternuni 84		169
	^		Nitrogan 7	31 D Pluspherus	As Asserte	Sb Antumony	209 Bi 64 muth		167
***************************************	N N		Garbon 0 12	28 Silson	Germalium	S0 m	207 Pb		165
			E w	27 A C Allormutin 13	76 Ga Gellerm	115 Indian 46	204 TC Thailinn		162
		***************************************			, ks Zn 30 km	Cd Cadmum 48	Hg Mercury		159
		***************************************			26 Carper	Ag Siver	Au 3oid		157
Group		***************************************			Nickel	Pd Paledium 46	195 Plateure, 78		152
9	***************************************				S9 Coreli	Rheckum	192 Ir Indum		150
		- Hydrogen			56 Fe	Rethering	190 OS OSmum 76		147
***************************************					Manganasa 25	TC Technetion	186 Re Ehemen 75		144 NA2
					S2 O1 Chromony 24	MO Molyederium 42	184 W Tungsten 74		141
					Varadium 23	93 N b - i illobarra 41	181 Tar Tarketon		140
					48 Titanium 22	Zr Zicorium 40	178 • Hafrium 72		71
					Scendeum 27	39 ×18m	139 La Lantinanum 57	AC Actimum t	d seriés
	=		Be Geryllam 4	NG Magnessen	Cakhum	St. Strentfum	137 Ba Reveum 56	226 74 23	* 58-71 Lanthanoid seriés
	_		- Chara	Na Southern	SS Potessium	BD Huberhum 37	Cersum 56	223 Frankum	* 58-71 [

260 167 Erbium The volume of one mole of any gas is 24dm³ at room temperature and pressure (r.t.p.). 247 BK 244 Pu 238 Pa Pa Cerium 232 Th 90

b = atomic (proton) number

a = relative atomic mass X = atomic symbol

Key

† 90-103 Actinoid series

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (ECoL) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.